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Abstract

In this paper, we tested the efficacy of frozen electro-
cardiogram (ECG) representation vectors from a foun-
dation model in detecting Chagas disease, as part of
the George B. Moody PhysioNet Challenge 2025. Our
team, Seoul Mates, utilized a pre-trained ECG founda-
tion model (ECG-JEPA) which was trained using self-
supervised learning on various ECG datasets. This ap-
proach learns robust ECG representations by predicting
masked portions of the signal in a latent feature space,
avoiding the pitfalls of reconstructing noisy raw signals.
For the challenge, we applied a linear evaluation proto-
col on the features extracted from the pre-trained model
without any fine-tuning. Interestingly, the feature repre-
sentations can recover important ECG parameters, such
as QRS duration and heart rate, suggesting the model’s
potential as an off-the-shelf screening tool for Chagas dis-
ease. Using these fixed representation vectors, our model
achieved the challenge score score of 0.217 on the hidden
test set, ranking 18th out of 41 teams.

1. Introduction

For the 2025 George B. Moody PhysioNet Challenge,
we explored the application of a foundation model for the
detection of Chagas disease from 12-lead electrocardio-
grams (ECGs) [1–3]. Since definitive serological testing
is limited by resource constraints, automated ECG anal-
ysis serves as a vital, scalable screening tool. Our work
is built on the hypothesis that frozen representation vec-
tors from a self-supervised ECG foundation model con-
tain rich, clinically relevant information sufficient for this
screening task. Leveraging the large, publicly available
datasets that underpin this competition [4–6], our approach
tests this idea by using off-the-shelf features from the pre-
trained ECG-JEPA [7] model. To classify the provided sig-
nals, we trained only a single linear layer on these fixed
representations, which was then evaluated on external val-
idation and test sets. This linear evaluation protocol was

deliberately chosen to assess the raw power of the learned
features while minimizing the risk of overfitting.

2. Methods

2.1. Datasets and Preprocessing

Our model was trained and evaluated using the datasets
provided for the 2025 George B. Moody PhysioNet Chal-
lenge. The publicly available training data is a compos-
ite of three distinct cohorts: CODE-15% [4], a large-
scale dataset of over 300,000 12-lead ECGs (400 Hz)
from Brazil with self-reported labels; SaMi-Trop [5], con-
taining 1,631 ECGs (400 Hz) from serologically con-
firmed Chagas-positive patients; and PTB-XL [6], provid-
ing 21,799 ECGs (500 Hz) from a European population as-
sumed to be Chagas-negative. Final model assessment was
performed on separate, non-public datasets from Chagas-
endemic areas, which were kept private for hidden valida-
tion and testing.

All ECG recordings were standardized to ensure consis-
tent input format across the dataset. We converted 12-lead
ECGs to a uniform 8-lead representation by selecting leads
I, II, and V1-V6. This lead selection strategy leverages the
mathematical relationships established by Einthoven’s tri-
angle, where four leads (III, aVR, aVL, aVF) can be re-
constructed from the eight independent leads:

III = II − I, aVR = −(I + II)/2,
aVL = (I − II)/2, aVF = (II − I)/2.

(1)

Each recording was standardized to 10 seconds duration
and resampled to 250 Hz, resulting in 2500 time steps per
lead. For recordings longer than 10 seconds, the middle
portion was extracted to preserve the most stable cardiac
cycles, while shorter recordings were zero-padded sym-
metrically. Importantly, no additional signal preprocess-
ing was applied, allowing the pre-trained model to work
with minimally processed ECG signals as encountered in
clinical practice. The resampled signals were then concep-
tually organized as patches of 50 time steps each, creat-
ing 50 patches per lead, resulting in a 2D representation
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x = {xc,i}, where 1 ≤ c ≤ 8 represents lead index and
1 ≤ i ≤ 50 represents patch index with xc,i ∈ R50.

2.2. ECG Representation Vector

We utilized a pre-trained, transformer-based foundation
model (ECG-JEPA) developed through self-supervised
learning on diverse ECG datasets. The model employs a
standard Transformer architecture adapted for electrocar-
diographic signals, featuring a 768-dimensional embed-
ding space, 12 transformer layers, and 16 attention heads.
The architecture processes ECG patches using multi-head
self-attention mechanisms to capture both intra-lead tem-
poral patterns and inter-lead spatial relationships.

During feature extraction, each ECG patch is first pro-
jected into the 768-dimensional embedding space via a
learned linear transformation. To preserve spatiotemporal
information, two-dimensional sinusoidal positional encod-
ings are added to the patch embeddings. The transformer
layers then process these embeddings through alternating
self-attention and feed-forward operations, with residual
connections and layer normalization applied throughout.
This process yields 50 patch-level representation vectors,
each with a dimension of 768.

To obtain a single global representation for each ECG
recording, we applied global average pooling across all 50
patch embeddings from the final transformer layer.

As reported in [7], these representation vectors are ver-
satile enough for both diagnostic classification and the ex-
traction of important ECG features, such as heart rate and
QRS duration, suggesting they capture both high-level se-
mantic and low-level physiological information. Given
their demonstrated richness, we use these frozen repre-
sentation vectors directly for the Chagas disease detection
task.

2.3. Linear Classification Framework

To evaluate the diagnostic utility of the frozen repre-
sentation vectors for Chagas disease detection, we im-
plemented a linear probing methodology. This approach
allows us to assess the discriminative power of the pre-
trained features without introducing additional complexity
through feature fine-tuning or deep classification heads.

Our classification architecture consists of a simple linear
transformation mapping the 768-dimensional representa-
tion vectors directly to binary predictions, which is sum-
marized in Figure 1. Specifically, the probability p of hav-
ing a chagas disease given a resampled ECG x ∈ R8×2500

is:
p = σ (W · f(x) + b) (2)

where f is a frozen pre-trained network, f(x) ∈ R768

represents the frozen ECG representation vector, W ∈

R1×768 is the learned weight matrix, b ∈ R is a learnable
bias term, and σ is the sigmoid function.

During training, we precomputed all ECG representa-
tion vectors using the frozen encoder to improve compu-
tational efficiency. This two-stage approach first extracts
features from all ECG recordings in large batches, then
trains the linear classifiers on these fixed representations,
significantly reducing training time and memory require-
ments.

Figure 1. An overview of our framework. An input ECG is
divided into patches and processed by a frozen, pre-trained
encoder to generate patch-level representations. These are
globally averaged to produce a single ECG representation
vector, which is then fed into a learnable linear classifier to
predict the probability of Chagas disease.
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2.4. Cross-Validation and Ensemble Strat-
egy

We implemented a 5-fold stratified cross-validation
scheme that serves dual purposes: enabling the utilization
of all training samples for model development and provid-
ing robust performance evaluation. The stratification pre-
serves the class distribution within each fold, which is par-
ticularly important given the inherent imbalance in Chagas
disease prevalence within the dataset.

For each cross-validation fold, we trained an indepen-
dent linear classifier using the corresponding training par-
tition while evaluating on the held-out validation set. This
approach ensures that every sample in the training dataset
contributes to model training across different folds, maxi-
mizing the utilization of available data. The process gen-
erates five distinct classifiers, each optimized on different
subsets of the training data while maintaining identical ar-
chitectures and hyperparameter configurations.

During inference, we combine predictions from all five
classifiers through ensemble averaging, which helps pre-
vent overfitting by reducing the variance of individual
model predictions and improving generalization perfor-
mance:

p =
1

5

5∑
i=1

pi (3)

where pi represents the probability output from the i-th
classifier. The ensemble strategy leverages the diversity
of models trained on different data partitions, leading to
more robust and reliable predictions than any single clas-
sifier. The final binary classification decision applies a 0.5
threshold to this ensemble probability.

2.5. Training Protocol and Optimization

Linear classifiers were trained using the AdamW opti-
mizer with a learning rate of 0.025. We employed a cosine
annealing schedule with warm restarts, beginning with a
3-epoch linear warmup phase where the learning rate grad-
ually increases from 0.0025 to the base rate, followed by
cosine decay to a minimum of 0.0025 over the remaining
epochs. This scheduler was adopted as a default from our
training framework; while not essential for a linear-only
protocol, its effect on the final performance was found to
be negligible compared to a constant learning rate. Train-
ing was conducted for a maximum of 20 epochs with early
stopping based on validation performance using the chal-
lenge score with patience epoch 5. We monitored the of-
ficial Challenge score on the validation set and terminated
training if no improvement was observed for 5 consecutive
epochs. The binary cross-entropy loss function was used

Training Validation Test Ranking
0.406± 0.007 0.306 0.217 18/41

Table 1. Challenge scores for our selected entry (team
Seoul Mates), including the ranking of our team on the hid-
den test set. We used 5-fold cross validation on the public
training set, repeated scoring on the hidden validation set,
and one-time scoring on the hidden test set.

5-fold CV.
Accuracy 0.764 ± 0.049
F1 Score 0.126 ± 0.016
AUROC 0.841 ± 0.005
AUPRC 0.176 ± 0.004

Table 2. Additional performance metrics from 5-fold
cross-validation on the public training set. Values are re-
ported as mean ± standard deviation across the folds

for optimization:

L = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (4)

where N is the batch size, yi is the true label, and pi is the
predicted probability.

To address the natural class imbalance present in Cha-
gas disease detection, we used weighted random sampling
during training. Sample weights were computed as the in-
verse of class frequencies, ensuring equal representation
of both positive and negative cases in each training batch.
Specifically, if n0 and n1 represent the number of negative
and positive samples respectively, the weights are calcu-
lated as:

w0 =
1

n0
, w1 =

1

n1
(5)

This rebalancing strategy prevents the model from devel-
oping a bias toward the majority class.

3. Results

Our official Challenge results are summarized in Table
1. The table presents the mean Challenge score from our
5-fold cross-validation on the public training set, alongside
the official score on the hidden validation set as evaluated
by the challenge organizers.

For a more detailed analysis of our model’s performance
during internal validation, supplementary metrics from the
5-fold cross-validation are provided in Table 2. These in-
clude standard classification metrics such as Accuracy, F1
score, AUROC, and AUPRC, which offer further insight
into the model’s behavior on the training data.
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4. Discussion

Our automated Chagas detection approach achieved a
challenge score of 0.217 on the hidden test set, which sug-
gests ECG-based screening could serve as a valuable first-
line tool in endemic regions, particularly where serolog-
ical testing is limited. The method’s minimal computa-
tional requirements after feature extraction and compat-
ibility with standard 12-lead ECGs make it practical for
resource-constrained healthcare settings.

4.1. Linear Evaluation vs. Fine-tuning

We conducted additional experiments with full model
fine-tuning. Unlike linear probing, where we freeze the
encoder and train only the linear classifier, fine-tuning up-
dates both the encoder and linear classifier. As expected,
fine-tuning the entire encoder achieved a notably higher 5-
fold cross-validation score of 0.497 on the training data.
However, its performance on the hidden validation set
dropped sharply to 0.262. This stark difference in gen-
eralization behavior validates our methodological choice:
the fixed feature approach captures generalizable cardiac
patterns while avoiding overfitting to dataset-specific arti-
facts. The result suggests that for Chagas detection, where
cardiac manifestations vary across populations and disease
stages, simpler models demonstrate superior robustness.

5. Conclusion

We demonstrated that Chagas disease screening from
ECG signals can be effectively performed using linear
classification on pre-extracted features. The approach’s
simplicity, computational efficiency, and robust general-
ization make it suitable for deployment in resource-limited
endemic regions. Our finding that linear evaluation out-
performs fine-tuning in generalization highlights the chal-
lenge of capturing diverse Chagas cardiac manifestations.
This work provides a practical foundation for developing
accessible screening tools for Chagas disease, contributing
to broader efforts in combating neglected tropical diseases
through automated diagnostics.
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